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TLDR; weakest known sufficient condition for offline RL is updated, specifically in terms of data coverage and sample size.
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Q. What is weakest practical condition for
successful offline RL?

Our contribution

Previous weakest condition [zhan et al. 2022]
* model-free realizability
* concentrability (data coverage) - removed

e sample size of 0(e7°) = reduced to O(E_Z)

Why removing concentrability (CC)?

Requirement:
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Issuel: concentrable T may NOT exist due to
* data fragmentation/censorship

* jnitial-state distribution shift

 unknown constraints on behavior actions

Issue2: Coefficient of CCis hard to estimate

—> CC is easily violated and difficult to verify in
practice

Proposal: Worst-case offline RL

New performance metric w/ built-in pessimism:
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uncertainty set under distribution oracle
U = {M — (T, T') : (T, 7") = (T*Jr*)lsupp(Pdata)’ 0<r< 1}

Justifications:
1. tractability: can be estimated w/o CC
2. generality: recovers standard metric if CC holds:

J() = J(m|M™) = J(1), v € llcc

3. sufficiency: generalized suboptimality dominates
standard one:
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Result 2: Saddle-point characterization

Consider “Lagrangian of offline RL":

Lw,f) ={A=y)v+f - +Tv—-"v))data
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Known: Saddle point under f = 0O is

1. well-defined only if optimal policy ™ is
concentrable and

2. solution of standard Bellman eq,, i.e., gives
optimal value function v*(s) and optimal
occupancy density f*(s, a).
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New: Saddle pointunderv > 0and f = 0is
1. well-defined unconditionally and
2. solution of Bellman eq. of M
N y

Result 1: Worst-case offline RL is still RL
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Def: Worst-case MDP M = (T, 7’) IS given by
T(S' a) — 1{pdata(5»a)>O}T*(S’ a) + 1{pdata(5»a)=0}5l

7(s,a) = Ly sa>0r (S, a)

where 1 is terminal state.
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—> Standard RL methods are still applicable

1. solve Bellman equation of M

2. extract optimal policies from Bellman eq.’s
solution

Result 3: Algorithm & sample complexity

We propose to minimize
L(f;w,m) =|Lsp(f)|+|Lpx(f; W, 1)

saddle-point loss

policy-extraction loss

where B
Lso(F) = max{~L(v, f) ~ — oI}

Lox(fiw,m) = max_(fE —wE(,m)aata

... achieving SOTA sample complexity bound!

Assumptions

Method Sample complexity bound

Concentrability Realizability

Zhan et al. (2022) ™ Tn e %(1 —v)~4n(N/6)
Chen and Jiang (2022) ™ ™ e *H°C,2In(N/6)
Ozdaglar et al. (2023) * ™ e 2(1— ) °CL2In(N/6)
Uehara et al. (2023) * * =24/ Beap (1 — ~)~6—4/BearIn(N/§)
Ours (Corollary 6.3) — * —2(1 — )" 4n(N /)

€: policy subopt; 6: confidence; y: discount factor; V': hypothesis size; Cq,,: min action value gap




