


Worst-Case Offline Reinforcement Learning with Arbitrary Data Support Kohei Miyaguchi (IBM Research – Tokyo/LY Research), NeurIPS2024

TLDR; weakest known sufficient condition for offline RL is updated, specifically in terms of <u>data coverage</u> and <u>sample size</u>.

Q. What is weakest practical condition for successful offline RL?

Our contribution

Previous weakest condition [Zhan et al. 2022]

- model-free realizability
- concentrability (data coverage) \rightarrow removed
- sample size of $O(\epsilon^{-6}) \rightarrow \text{reduced to } O(\epsilon^{-2})$

Why removing concentrability (CC)?

Requirement:

 $\sup_{s,a} \frac{d^{\hat{\pi}}(s,a)}{p_{\text{data}}(s,a)} < \infty$

offline state-action distribution

Issue1: concentrable $\hat{\pi}$ may NOT exist due to

- data fragmentation/censorship
- initial-state distribution shift
- unknown constraints on behavior actions

Issue2: Coefficient of CC is hard to estimate

\rightarrow CC is easily violated and difficult to verify in practice

Proposal: Worst-case offline RL

New performance metric w/ built-in pessimism:

$$\tilde{J}(\pi) \coloneqq \min_{\mathcal{M} \in \mathfrak{U}} J(\pi | \mathcal{M})$$

uncertainty set under distribution oracle $\mathfrak{U} \coloneqq \left\{ \mathcal{M} = (T, r) : (T, r) = (T^*, r^*)|_{\mathrm{supp}(p_{\mathrm{data}})}, 0 \le r \le 1 \right\}$

Justifications:

- 1. tractability: can be estimated w/o CC
- 2. generality: recovers standard metric if CC holds:

 $J(\pi) \coloneqq J(\pi | \mathcal{M}^*) = \tilde{J}(\pi), \qquad \forall \pi \in \Pi_{CC}$

sufficiency: generalized suboptimality dominates 3. standard one:

 $\max_{\pi^* \in \Pi_{CC}} J(\pi^*) - J(\pi) \le \max_{\widetilde{\pi}^* \in \Pi_{2^{11}}} \widetilde{J}(\widetilde{\pi}^*) - \widetilde{J}(\pi)$

Result 1: Worst-case offline RL is still RL

Def: Worst-case MDP $\widetilde{\mathcal{M}} = (\widetilde{T}, \widetilde{r})$ is given by

 $\tilde{T}(s,a) = \mathbf{1}_{\{p_{\text{data}}(s,a)>0\}} T^{*}(s,a) + \mathbf{1}_{\{p_{\text{data}}(s,a)=0\}} \delta_{\perp}$

$$\tilde{r}(s,a) = \mathbf{1}_{\{p_{\text{data}}(s,a)>0\}} r^{\star}(s,a)$$

where \perp is terminal state.

Thm: $\tilde{J}(\pi) = J(\pi | \tilde{\mathcal{M}})$ for all π

\rightarrow Standard RL methods are still applicable

- 1. solve Bellman equation of \mathcal{M}
- 2. extract optimal policies from Bellman eq.'s solution

policy value under MDP \mathcal{M}

Result 2: Saddle-point characterization

Consider "Lagrangian of offline RL":

 $L(v, f) \coloneqq \langle (1 - \gamma)v + f \cdot (r + Tv - v) \rangle_{data}$

Known: Saddle point under $f \ge 0$ is 1. well-defined only if optimal policy π^* is

- concentrable and
- occupancy density $f^*(s, a)$.

New: Saddle point under $v \ge 0$ and $f \ge 0$ is 1. well-defined unconditionally and 2. solution of Bellman eq. of $\hat{\mathcal{M}}$

Result 3: Algorithm & sample complexity

$$\mathcal{L}(f; w, \pi) = \mathcal{L}_{S}$$

where

$$\mathcal{L}_{SP}(f) \coloneqq \max_{v \ge 0} \{- \mathcal{L}_{PX}(f; w, \pi) \coloneqq \xi\}$$

We propose to minimize $\mathcal{L}(f; w, \pi) = \mathcal{L}_{SP}(f) + \mathcal{L}_{PX}(f; w, \pi)$			
	saddle-poi	int loss p	policy-extraction loss
where $\mathcal{L}_{SP}(f) \coloneqq \max_{v \ge 0} \left\{ -L(v, f) - \frac{1 - \gamma}{2} \ v\ ^2 \right\}$ $\mathcal{L}_{PX}(f; w, \pi) \coloneqq \max_{\xi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} \langle f\xi - w\xi(\cdot, \pi) \rangle_{data}$			
	ξ:	$\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{n}$	
			lexity bound!
achieving		ole comp	lexity bound!
	SOTA samp	ole comp	
achieving S Method Zhan et al. (2022)	SOTA samp Assump	ole comp	lexity bound! Sample complexity bound
achieving S Method Zhan et al. (2022) Chen and Jiang (2022)	SOTA samp Assump Concentrability π^* π^*	ble completions Realizability $\pi_n^{\pi_n}$	lexity bound! Sample complexity bound
Image: matrix of the state o	SOTA samp Assump Concentrability π^* π^* π^*	ble compositions Realizability π_n^* π^*	Sample complexity bound $\frac{\epsilon^{-6}(1-\gamma)^{-4}\ln(\mathcal{N}/\delta)}{\epsilon^{-2}H^5C_{gap}^{-2}\ln(\mathcal{N}/\delta)}$ $\epsilon^{-2}(1-\gamma)^{-6}C_{gap}^{-2}\ln(\mathcal{N}/\delta)$
Lachieving S Method Zhan et al. (2022) Chen and Jiang (2022) Ozdaglar et al. (2023) Uehara et al. (2023)	SOTA samp Assump Concentrability π^* π^*	ble compositions Realizability $\pi_n^n \pi^* \pi^* \pi^* \pi^*$	Exity bound! Sample complexity bound $\frac{\epsilon^{-6}(1-\gamma)^{-4}\ln(\mathcal{N}/\delta)}{\epsilon^{-2}H^5C_{gap}^{-2}\ln(\mathcal{N}/\delta)}$ $\frac{\epsilon^{-2}(1-\gamma)^{-6}C_{gap}^{-2}\ln(\mathcal{N}/\delta)}{\epsilon^{-2-4/\beta_{gap}}(1-\gamma)^{-6-4/\beta_{gap}}\ln(\mathcal{N}/\delta)}$
Image: matrix of the state o	SOTA samp Assump Concentrability π^* π^* π^*	ble compositions Realizability π_n^* π^*	Sample complexity bound $\frac{\epsilon^{-6}(1-\gamma)^{-4}\ln(\mathcal{N}/\delta)}{\epsilon^{-2}H^5C_{gap}^{-2}\ln(\mathcal{N}/\delta)}$ $\epsilon^{-2}(1-\gamma)^{-6}C_{gap}^{-2}\ln(\mathcal{N}/\delta)$

2. solution of standard Bellman eq., i.e., gives optimal value function $v^*(s)$ and optimal